4 Semiconductor in Equilibrium
4.1 Charge Carriers in Semiconductors
The distribution (with respect to energy) of electrons in the conduction band is given by the density of allowed quantum states times the probability that a state is occupied by an electron. This statement is written in equation form as
- \(f_F(E)\) the Fermi-Diract probability function
- \(g_c(E)\) the density of quantum states in the conduction band.
Similarly, the distribution (with respect to energy) of holes,
下图建立在以下假设之上:
- \(E_F\)近似位于\(E_C\)与\(E_V\)之间的1/2处
- 电子与空穴的有效质量相等,则\(g_C\)与\(g_V\)对称
\(n_0\)与\(p_0\)方程
假设:
- \(E_F\)处于禁带中,导带中的电子能量\(E>E_c\)
- 若\((E-E_F)>>kT\),使用Boltzmann近似
$$ f_F(E)=\frac1{1+\exp(\frac{E-E_F}{kT})}\approx \exp(-\frac{E-E_F}{kT}) $$ 则得:
$$ n_0=\int_{E_C}^\infin \frac{4\pi(2m^*_n)^{3/2}}{h^3}\sqrt{E-E_C}\exp[-\frac{(E-E_F)}{kT}]dE $$ 设
$$ \eta=\frac{E-E_C}{kT} $$ (5)等于
令
- \(N_C\) denotes the effective density of states in the conduction band
the thermal-equilibrium concentration of electrons
在Boltzmann近似成立的情况下
$$ n_0=N_C\exp\left[-\frac{E_C-E_F}{kT}\right] $$ 同理,
4.1.3 The Intrinsic Carrier Concentration
Intrinsic 本征
Intrinsic Semiconductor的性质
The intrinsic carrier concentration 本征载流子浓度
当温度恒定,\(n_i\)为定值,随温度变化明显
4.1.4 The Intrinsic Fermi-Level Position
之前是定性说明在1/2处,现在给出明确的具体位置
4.2 Dopant atoms and Energy Levels
P- phosphorus 磷
5 valence electrons, the 5th loosely bound to the phosphorus atom - donor electron.
\(E_d\)为donor Electron的能量
提供donor Electron的杂质原子称为donor impurity atom
由于增加了导电原子,但不产生价带空穴,因此称之为n型半导体 n-type semiconductor;
若参杂III族,此时有一个空穴产生,如果有一个电子具有\(E_a\)的能量,则填补了这个空穴,相当于空穴发生了移动。此时,这个III族原子被称为acceptor impurity atom,则该半导体被称为p型半导体 p-type semiconductor
n型与p型合称为extrinsic semiconductor
4.2.2 Ionization Energy
规定:
电子和离子间的库伦引力等于轨道电子的向心力
由角动量量子化,可得
玻尔半径:
轨道半径有:
轨道电子的总能量为:
If we consider silicon, the ionization energy is \(E=25.8 \text{meV}\), much less than the bandgap energy of silicon. This energy is the approximate ionization energy of the donor atom, or the energy required to elevate the donor electron into the conduction band.
4.2.3 Group III-V Semiconductors
4.3 The Extrinsic semiconductor
- \(n_0>p_0\), n-type semiconductor
- \(n_0<p_0\), p type semiconductor
有以下重要等式,(Boltzmann Approximation),\(n_i\)本征浓度
4.3.3 The Fermi-Dirac Integral
如果Boltzmann Approximation失效,则
令
$$ \begin{gather} p_0=4\pi(\frac{2m^_pkT}{h^2})^{3/2}\int^\infin_0\frac{\eta'^{1/2}d\eta'}{1+\exp(\eta'-\eta'_F)}\ \small{\text{where }\eta'=\frac{E_V-E}{kT},\quad \eta_F=\frac{E_V-E_F}{kT}} \end{gather*} $$
4.3.4 Degenerate and Nondegenerate Semiconductors
以n type为例->杂质浓度较低->施主电子之间不存在相互作用;
We have assumed that the impurities introduce discrete, noninteracting donor energy states in the n-type semiconductor and discrete, noninteracting acceptor states in the p-type semiconductor.
上述为 nondegenerate semiconductos的定义。
若浓度增加到施主电子开始相互作用的临界点
When this occurs, the single discrete donor energy will split into a band of energies. As the donor concentration further increases, the band of donor states widens and may overlap the bottom of the conduction band. This overlap occurs when the donor concentration becomes comparable with the effective density of states.
上述定义为 degenerate n-type semiconductor,特征:导带中电子浓度非常大
同理,也有 nondegenrate p-type semiconductor,特征:价带中空穴浓度非常大
4.4 Statistics of Donors And Acceptors
4.4.1 Probability Function
电子占据施主能级的概率为(电子占据施主能级的密度)
对于施主电子来说,每隔施主能级都有两种可能的自旋方向,因此每隔施主能级有两个量子态,因此有一个\(\frac1{2}\)因子,有时也写为\(1/g\)(\(g\)为简并因子)。
\(N_d^+\)为电离施主杂质浓度 (the concentration of ionized donors)
同理:
4.4.2 Compelete Ionization and Freeze-Out
假设\(E_d-E_D>>kT\),则
因
因此得,
\(E_C-E_d\)为施主电子的电离能
同理:
束缚态
4.5 Charge Neutrality
A compensated semiconductor is one that contains both donor and acceptor impurity atoms in the same region.
- \(N_d>N_a\): n-type compensated semiconductor
- \(N_d=N_a\): completely compensated semiconductor
- \(N_d<N_a\): p-type compensated semiconductor
电中性条件:
若完全电离,则
由于
重新分布
- 施主电子落入价带中的空状态,抵消部分本征空穴
- 一部分则进入导带进行导电
上图为电子浓度与温度的关系(参杂浓度为\(5\times10^{14}cm^{-3}\)):
- Partial Ionization, 部分电离,Freeze-out
- Extrinsic, 非本征状态,由杂质浓度进行主导(即\(N_d>>n_i\))
- Intrinsic, 本征状态,由\(n_i\)主导
同理:
4.6 Position of Fermi Energy Level
Way 1
现考虑一块n type semiconductor, \(N_d>>n_i\),则\(n_0\approx N_d\)
Way 2
上式适用n type
对于p type
T=300K, 随着参杂浓度提高\(E_F\)的变化
趋近本征费米能级
- 温度升高
- 浓度降低
温度较低的情况下,出现束缚态,假设不再有效。