跳转至

3 Introduction to the Quantum Theory of Solids

3.1 Allowed and Forbidden Energy Bands

image-20240704140255482image-20240704140432020

image-20240704140502040image-20240704144925972

3.1.3 The \(k\)-Space Diagram

the k comes from that all one-electron wave functions, for problems involving periodically varying potential energy functions, must be of the form \(\psi(x)=u(x)e^{jkx}\)

\[ \begin{gather*} P'\frac{\sin\alpha a}{\alpha a}+\cos \alpha a=\cos ka\\ P'=\frac{mV_0ba}{\hbar^2} \end{gather*} \]

Equation gives the relation between the parameter \(k\) total energy \(E\) (through the parameter \(\alpha\)), and the potential barrier \(bV_0\).

We assume that \(V_0=0\), then we acquire

\[ \begin{gather*} \cos \alpha a=\cos ka\\ or\quad \alpha =k \end{gather*} \]

\(\alpha\) is given by\(\sqrt{\frac{2mE}{\hbar^2}}=\frac{p}{\hbar}=k\), so we obtain the relationship between \(k\) and \(E\)

\[ E=\frac{k^2\hbar^2}{2m} \]

image-20240704144228103

Now, we consider the relation between \(E\) and \(k\) form Equation for the particle in the single-crystal lattice.

define the left side of the Equation as

$$ f(\alpha a)=P'\frac{\sin\alpha a}{\alpha a}+\cos\alpha a $$ to the right side, we also have,

$$ f(\alpha a)=\cos ka $$ image-20240704145326035

image-20240704145501812

the right side can also be written as \(\cos ka=\cos(ka+2n\pi)=\cos(ka-2n\pi)\)

then we gain

image-20240704150237183

3.2 Electrical Conduction In Solids

3.2.1 The Energy Band and the Bond Model

image-20240704140810574

image-20240704141325933

3.2.2 Drift Current

the drift current density

\[ \begin{gather*} J=qNv_d\qquad A/cm^2\\ or\quad J=q\sum^N_{i=1}v_i \end{gather*} \]

if a force is applied to a particle and the particle moves.

\[ dE=Fdx=Fv\cdot dt \]

image-20240719142357190

3.2.3 Electron Effective Mass

\[ F_{\text{total}}=F_{\text{ext}}+F_{\text{int}}=ma \]

and we add \(m^*\) as effective mass

\[ F_{ext}=m^*a \]

then back to the Equation, we obtain,

\[ \begin{gather*} \frac{dE}{dk}=\frac{\hbar^2k}{m}=\frac{\hbar p}{m}\\ \frac1{\hbar}\frac{dE}{dk}=\frac{p}m=v \end{gather*} \]

and, if we take the second derivative of \(E\) with respect to \(k\)

\[ \frac1{\hbar^2}\frac{d^2E}{dk^2}=\frac1{m} \]

apply the Newton's classical equation of motion:

\[ \begin{align*} F&=ma=-eE\\ a&=\frac{-eE}{m} \end{align*} \]

\(k\)\(E\)的关系进行近似,即

\[ E-E_c=C_1(k)^2 \]

image-20240704181304775

since that,

\[ \begin{gather*} \frac{d^2E}{dk^2}=2C_1\\ \frac1{\hbar^2}\frac{d^2E}{dk^2}=\frac{2C_1}{\hbar^2}=\frac1{m^*} \end{gather*} \]

then the acceleration,

\[ a=\frac{-eE}{m^*_n} \]

\(m^*_N\) denotes the effective mass of the electron

3.2.4 Concept of the Hole

\[ \begin{gather*} J=-e\sum_{i(filled)}v_i\\ J=-e\sum_{i(total)}v_i+e\sum_{i(empty)}v_i\\ \text{(take into account a very large number of states)} \end{gather*} \]

image-20240704183844465

\[ -e\sum _{i(roral)}v_i = 0 \]
\[ \therefore j=+e\sum_{i(empty)}v_i \]

3.2.5 Metals, Insulators, and Semiconductors

image-20240704193244779

image-20240704193421590

3.3 Extension to Three Dimensions

image-20240704193628800

3.4 Density of States Functions

image-20240704194824205

量子态密度。

\(g_V(E)\)代表空穴每单位体积每单位能量的量子态数

\[ g_V(E)=\frac{4\pi(2m^*_p)^{3/2}}{h^3}\sqrt {E_V-E} \]

-E\(g_C(E)\)代表导带中每单位体积每单位能量的量子态数

\[ g_C(E)=\frac{4\pi(2m_n^*)^{3/2}}{h^3}\sqrt{ E-E_C} \]

3.5 Statistical Mechanics

概率密度函数:

\[ \frac{N(E)}{g{(E)}}=f_F(E)=\frac1{1+\exp(\frac{E-E_F}{kT})} \]

\(N(E)\)为单位体积单位能量的粒子数,\(g(E)\)为单位体积单位单位能量的量子状态。

\(E_F\)为费米能级

\(f_F(E)\)为Fermi-Dirac distribution/ probability function,代表能量为E的量子态被电子占据的可能性

  • 开始时考虑\(T=0k, E<E_F\),则\(f_F=1\);若\(E>E_F\),则\(f_F=0\)。如下图\(E_4<E_F\le E_5\)

image-20240716151208445

image-20240716151341272

  • 温度升高,一定的电子跃入更高的能级,电子分布发生改变

image-20240716151504767

\(E_F\)以上\(dE\)距离处被电子占据的概率,与\(E_F\)以下\(dE\)距离处为空穴的概率相等,因此

image-20240716151944517

Maxwell-Boltzmann approximation \(f_F(E)\approx exp\left[\frac{-(E-E_F)}{kT}\right]\)

image-20240716152202470